Phylogenetic and phenotypic characterization of Fusarium oxysporum f. sp. niveum isolates from Florida-grown watermelon

James C. Fulton, B. Sajeewa Amaradasa, Tuelin S. Ertek, Fanny B. Iriarte, Tatiana Sanchez, Pingsheng Ji, Mathews L. Paret, Owen Hudson, Md. Emran Ali, Nicholas S. Dufault

PLOS ONE(2021)

引用 5|浏览12
暂无评分
摘要
Fusarium wilt of watermelon (Citrullus lanatus) caused by Fusarium oxysporum f. sp. niveum (Fon), has become an increasing concern of farmers in the southeastern USA, especially in Florida. Management of this disease, most often through the use of resistant cultivars and crop rotation, requires an accurate understanding of an area's pathogen population structure and phenotypic characteristics. This study improved the understanding of the state's pathogen population by completing multilocus sequence analysis (MLSA) of two housekeeping genes (BT and TEF) and two loci (ITS and IGS), aggressiveness and race-determining bioassays on 72 isolates collected between 2011 and 2015 from major watermelon production areas in North, Central, and South Florida. Multilocus sequence analysis (MLSA) failed to group race 3 isolates into a single large clade; moreover, clade membership was not apparently correlated with aggressiveness (which varied both within and between clades), and only slightly with sampling location. The failure of multilocus sequence analysis using four highly conserved housekeeping genes and loci to clearly group and delineate known Fon races provides justification for future whole genome sequencing efforts whose more robust genomic comparisons will provide higher resolution of intra-species genetic distinctions. Consequently, these results suggest that identification of Fon isolates by race determination alone may fail to detect economically important phenotypic characteristics such as aggressiveness leading to inaccurate risk assessment.
更多
查看译文
关键词
fusarium,florida-grown
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要