Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis

WORLD JOURNAL OF SURGICAL ONCOLOGY(2021)

Cited 15|Views4
No score
Abstract
Background Triple-negative breast cancer (TNBC) is a major subtype of breast cancer. Due to the lack of effective therapeutic targets, the prognosis is poor. In order to find an effective target, despite many efforts, the molecular mechanisms of TNBC are still not well understood which remain to be a profound clinical challenge. Methods To identify the candidate genes in the carcinogenesis and progression of TNBC, microarray datasets GSE36693 and GSE65216 were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and functional and pathway enrichment analyses were performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases via DAVID. We constructed the protein-protein interaction network (PPI) and performed the module analysis using STRING and Cytoscape. Then, we reanalyzed the selected DEG genes, and the survival analysis was performed using cBioportal. Results A total of 140 DEGs were identified, consisting of 69 upregulated genes and 71 downregulated genes. Three hub genes were upregulated among the selected genes from PPI, and biological process analysis uncovered the fact that these genes were mainly enriched in p53 pathway and the pathways in cancer. Survival analysis showed that only CCNE1 may be involved in the carcinogenesis, invasion, or recurrence of TNBC. The expression levels of CCNE1 were significantly higher in TNBC cells than non-TNBC cells that were detected by qRT-PCR ( P < 0.05). Conclusion CCNE1 could confer a poorer prognosis in TNBC identified by bioinformatic analysis and plays key roles in the progression of TNBC which may contribute potential targets for the diagnosis, treatment, and prognosis assessment of TNBC.
More
Translated text
Key words
Triple-negative breast cancer,GEO,CCNE1,Prognosis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined