Barrierless Hono And Hos(O)(2)-No2 Formation Via Nh3-Promoted Oxidation Of So2 By No2

JOURNAL OF PHYSICAL CHEMISTRY A(2021)

引用 3|浏览4
暂无评分
摘要
In the troposphere, the knowledge about nitrous acid (HONO) sources is incomplete. The missing source of sulfate and fine particles cannot be explained during haze events. Air quality models cannot predict high levels of secondary fine-particle pollution. Despite extensive studies, one challenging issue in atmospheric chemistry is identifying the source of HONO. Here, we present direct ab initio molecular dynamics simulation evidence and typical air pollution events of the formation of gaseous HONO, nitrogen dioxide/hydrogen sulfite (HOS(O)(2)-NO2 or NO2-HSO3) from nitrogen dioxide (NO2), sulfur dioxide (SO2), water (H2O), and ammonia (NH3) molecules in a proportion of 2:1:3:3. The reactions show a new mechanism for the formation of HONO and NO2-HSO3 in the troposphere, especially when the concentration of NO2, SO2, H2O, and NH3 is high (e.g., 2:1:3:3 or higher) in the air. Contrary to the proportion NO2, SO2, H2O, and NH3 equaling to 1:1:3:1 and 1:1:3:2, the proportion (2:1:3:3) enables barrierless reactions and weak interactions between molecules via the formation of HONO, NO2HSO3, and NH3/H2O. In addition, field observations are carried out, and the measured data are summarized. Correlation analysis supported the conversion of NO2 to HONO during observational studies. The weak interactions promote proton transfer, resulting in the generation of HONO, NO2-HSO3, and NH3/H2O pairs.
更多
查看译文
关键词
oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要