Influence of thermal environment on metallographic structure characteristics of the electric arc bead pattern

Journal of Loss Prevention in the Process Industries(2021)

引用 10|浏览1
暂无评分
摘要
Electrical apparatuses are prone to arc, which generally causes a fire, even an explosion hazard, when a flammable gas mixture is present, especially during industrial processes. Terrible fire scenes are challenging for fire investigations. In this work, by performing a simultaneous thermal analysis test we simulated a fire environment and found that as the oxygen concentration decreased, the oxidation/exothermic peak temperature of ‘cause’ bead became higher, but the melting temperature was unaffected. Results indicated that the bead pattern underwent oxidation at approximately 831 °C, melting initiated at approximately 1060 °C, and the pattern then disappeared. The melted pattern grain changes were divided into three critical temperature stages: Approximately 600 °C, the onset temperature at which the melted pattern grains began to be equiaxed; approximately 831 °C, at which the grains were interspersed with oxygen-containing material; and 831–1060 °C, when the grains disappeared, which is a criterion for identifying electrical fires. However, the boundaries remained throughout the thermal environment process. Moreover, the bead pattern demonstrated three metallographic regions: Deep layer (Region I), the intermediate layer (Region Ⅱ), and surface layer (Region Ⅲ). Region I was the most thermally sensitive, in which equiaxed crystals first appeared. Region Ⅲ was the thermal reaction lag zone, in which the typical branching crystals finally disappeared, and Region Ⅱ was intermediate between Regions I and Ⅲ. The results may help fire investigators determine the fire scene temperature stages and provide support for fire evidence extraction.
更多
查看译文
关键词
Electrical apparatus,Fire environment,Oxygen concentration,Critical temperature,Electrical fires
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要