Chrome Extension
WeChat Mini Program
Use on ChatGLM

Enhanced bacterial uptake of I-131-labeled antimicrobial imidazolium bromide salts using fluorescent carbon nanodots

MATERIALS TODAY COMMUNICATIONS(2021)

Cited 4|Views16
No score
Abstract
Imidazolium bromide salts have been shown as potent antibiotic molecules that show structure-based bioactivity related to their cation alkyl side chain length. To enhance the bioavailability of lipophilic alkyl side chains herein, a 1,8-naphthalimide group containing imidazolium bromide salts bearing different lengths of alkyl chains (NIM1, 2, and 3) are coupled with fluorescent carbon dots (C-NIMs) through electrostatic and pi-pi interactions. Further, obtained nanocarriers were radio-labeled with iodine-131 (I-131) to track the bacterial uptake of them by Staphylococcus aureus and Escherichia coli. Antibacterial activities were also investigated by the microdilution method. Comparison studies showed that both radiolabeling efficiency and lipophilicity increased when NIMs were integrated onto the CDots. More importantly, CDots resulted in 4-fold enhanced uptake of NIM1 by S. aureus bacterium as compared to pristine imidazolium bromide salts while at a higher number of alkyl chain lengths enhancement was 2-fold.
More
Translated text
Key words
Carbon dots,Imidazolium salts,Naphthalimide,Antibacterial activity,Radiolabelling,Gram-positive bacteria
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined