Kinetics Of The Boride Layers Obtained On Aisi 1018 Steel By Considering The Amount Of Matter Involved

COATINGS(2021)

Cited 12|Views6
No score
Abstract
Boride layers are typically used to combat the wear and corrosion of metals. For this reason, to improve our knowledge of the boriding process, this research studied the effect of the size of the treated material on the kinetics of the growth of the boride layers obtained during a solid diffusion process. The purpose was to elucidate how the layers' growth kinetics could be affected by the size of the samples since, as the amount of matter increases, the amount of energy necessary to make the process occur also increases. Furthermore, the level of activation energy seems to change as a function of the sample size, although it is considered an intrinsic parameter of each material. Six cylindrical samples with different diameters were exposed to the boriding process for three different exposure times (1.5, 3, and 5 h). The treatment temperatures used were 900, 950, and 1000 degrees C for each size and duration of treatment. The results show that the layer thickness increased not only as a function of the treatment conditions but also as a function of the sample diameter. The influence of the sample size on the growth kinetics of the boride layers is clear, because the growth rate increased even though the treatment conditions (time and temperature) remained constant.
More
Translated text
Key words
boride layers, sample size, activation energy, kinetics of growth, modeling
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined