Contrasting Effects Of Secondary Organic Aerosol Formations On Organic Aerosol Hygroscopicity

ATMOSPHERIC CHEMISTRY AND PHYSICS(2021)

引用 10|浏览16
暂无评分
摘要
Water uptake abilities of organic aerosol under sub-saturated conditions play critical roles in direct aerosol radiative effects and atmospheric chemistry; however, field characterizations of the organic aerosol hygroscopicity parameter kappa(OA) under sub-saturated conditions remain limited. In this study, a field campaign was conducted to characterize kappa(OA) at a relative humidity of 80% with hourly time resolution for the first time in the Pearl River Delta region of China. Observation results show that, during this campaign, secondary organic aerosol (SOA) dominated total organic aerosol mass (mass fraction > 70% on average), which provides a unique opportunity to investigate influences of SOA formation on kappa(OA). Results demonstrate that the commonly used organic aerosol oxidation level parameter O/C was weakly correlated with kappa(OA) and failed to describe the variations in kappa(OA). However, the variations in kappa(OA) were well reproduced by mass fractions of organic aerosol factor resolved based on aerosol mass spectrometer measurements. The more oxygenated organic aerosol (MOOA) factor, exhibiting the highest average O/C (similar to 1) among all organic aerosol factors, was the most important factor driving the increase in kappa(OA) and was commonly associated with regional air masses. The less oxygenated organic aerosol (LOOA; average O/C of 0.72) factor revealed strong daytime production, exerting negative effects on kappa(OA). Surprisingly, the aged biomass burning organic aerosol (aBBOA) factor also formed quickly during daytime and shared a similar diurnal pattern with LOOA but had much lower O/C (0.39) and had positive effects on kappa(OA). The correlation coefficient between kappa(OA) and mass fractions of aBBOA and MOOA in total organic aerosol mass reached above 0.8. The contrasting effects of LOOA and aBBOA formation on kappa(OA) demonstrate that volatile organic compound (VOC) precursors from diverse sources and different SOA formation processes may result in SOA with different chemical composition, functional properties and microphysical structure, consequently exerting distinct influences on kappa(OA) and rendering single oxidation level parameters (such as O/C) unable to capture those differences. Aside from that, distinct effects of aBBOA on kappa(OA) were observed during different episodes, suggesting that the hygroscopicity of SOA associated with similar sources might also differ much under different emission and atmospheric conditions. Overall, these results highlight that it is imperative to conduct more research on kappa(OA) characterization under different meteorological and source conditions and examine its relationship with VOC precursor profiles and formation pathways to formulate a better characterization and develop more appropriate parameterization approaches in chemical and climate models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要