Shallow Tunnel Detection Using Converted Surface Waves

GEOPHYSICS(2021)

引用 2|浏览4
暂无评分
摘要
Seismic surface waves that were likely converted from incident body waves were used to detect a 3 m deep tunnel using two novel processing methods. In data acquired at a tunnel test site, a unique forward-propagating wave (traveling away from the tunnel and seismic source) was identified as an early-arriving surface wave converted at the tunnel from an incident body wave. To our knowledge, our research represents the first time converted surface waves have been observed originating from a tunnel. We have developed two novel processing methods targeting this unique wavefield component for detecting tunnels, cavities, or other shallow anomalies. The first is a time-domain imaging method that takes advantage of the unique kinematic characteristics of converted surface waves to produce a cross section with a coherent, high-amplitude signature originating from the horizontal location of the tunnel. The second method uses frequency-domain analysis of surface-wave amplitudes, which reveals increased amplitudes (primarily from converted surface waves) at locations expected for the tunnel. These proposed approaches for analysis of converted surface waves were successfully used to detect the tunnel and accurately interpret its horizontal location in real- world data. These novel methods could be the key for detecting shallow tunnels or other subsurface anomalies and complement existing seismic detection methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要