The Application Of Ensemble Wave Forcing To Quantify Uncertainty Of Shoreline Change Predictions

JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE(2021)

引用 16|浏览3
暂无评分
摘要
Reliable predictions and accompanying uncertainty estimates of coastal evolution on decadal to centennial time scales are increasingly sought. So far, most coastal change projections rely on a single, deterministic realization of the unknown future wave climate, often derived from a global climate model. Yet, deterministic projections do not account for the stochastic nature of future wave conditions across a variety of temporal scales (e.g., daily, weekly, seasonally, and interannually). Here, we present an ensemble Kalman filter shoreline change model to predict coastal erosion and uncertainty due to waves at a variety of time scales. We compare shoreline change projections, simulated with and without ensemble wave forcing conditions by applying ensemble wave time series produced by a computationally efficient statistical downscaling method. We demonstrate a sizable (site-dependent) increase in model uncertainty compared with the unrealistic case of model projections based on a single, deterministic realization (e.g., a single time series) of the wave forcing. We support model-derived uncertainty estimates with a novel mathematical analysis of ensembles of idealized process models. Here, the developed ensemble modeling approach is applied to a well-monitored beach in Tairua, New Zealand. However, the model and uncertainty quantification techniques derived here are generally applicable to a variety of coastal settings around the world.
更多
查看译文
关键词
Coastal change, data assimilation, ensemble, shoreline modeling, uncertainty quantification, wave climate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要