Atomic-scale intermolecular interaction of hydrogen with a single VOPc molecule on the Au(111) surface

RSC ADVANCES(2021)

Cited 2|Views1
No score
Abstract
Molecular dynamics of hydrogen molecules (H-2) on surfaces and their interactions with other molecules have been studied with the goal of improvement of hydrogen storage devices for energy applications. Recently, the dynamic behavior of a H-2 at low temperature has been utilized in scanning tunnelling microscopy (STM) for sub-atomic resolution imaging within a single molecule. In this work, we have investigated the intermolecular interaction between H-2 and individual vanadyl phthalocyanine (VOPc) molecules on Au(111) substrates by using STM and non-contact atomic force microscopy (NC-AFM). We measured tunnelling spectra and random telegraphic noise (RTN) on VOPc molecules to reveal the origin of the dynamic behavior of the H-2. The tunnelling spectra show switching between two states with different tunnelling conductance as a function of sample bias voltage and RTN is measured near transition voltage between the two states. The spatial variation of the RTN indicates that the two-state fluctuation is dependent on the atomic-scale interaction of H-2 with the VOPc molecule. Density functional theory calculations show that a H-2 molecule can be trapped by a combination of a tip-induced electrostatic potential well and the potential formed by a VOPc underneath. We suggest the origin of the two-state noise as transition of H-2 between minima in these potentials with barrier height of 20-30 meV. In addition, the bias dependent AFM images verify that H-2 can be trapped and released at the tip-sample junction.
More
Translated text
Key words
single vopc molecule,intermolecular interaction,hydrogen,atomic-scale
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined