Ligand effects in gold-carbonyl complexes: Evaluation of the bond dissociation energies using blackbody infrared radiative dissociation

International Journal of Mass Spectrometry(2021)

引用 4|浏览8
暂无评分
摘要
In a previous work, the ability of gold-carbonyl bond dissociation energies (BDEs) to describe ligand effects in gold(I) complexes was probed using collision-induced dissociation measurements. Despite the large experimental error of the technique, results agreed with theoretical description of these effects. We propose here another experimental approach to evaluate the BDEs of [LAu-CO]+ complexes, by using Blackbody Infrared Radiative Dissociation (BIRD) method which is able to provide absolute energetic measurements. To this aim, the dissociation of 8 gold-carbonyl complexes was studied with this approach to obtain their Arrhenius activation energies. Because these complexes do not reach the rapid energy exchange (REX) limit conditions, critical energies of these dissociations were then determined using the kinetic data and an Equilibrium Truncated Thermal (ETT) internal energy distribution model implemented in the RRKM-QET MassKinetics software. To validate our approach, the known critical energies of proton-bound amino acid dimers were first reinvestigated using this model. The results are in excellent agreement with those reported in the literature. This indicates that the assumptions of this simple model are reasonable and allow the determination of accurate dissociation energies. For [LAu-CO]+ complexes, even though a shift (from 0.18 to 0.26 eV) is observed between binding energies obtained and calculated values, a linear tendency between these two sets of data is still obtained. These results validate the use of BIRD in combination with equilibrium truncated thermal internal energy distributions model to obtain dissociation energies for relatively small ions. It is also shown herein that the measure of the gold-carbonyl bond dissociation energies is a good descriptor of ligand effects in gold(I) complexes that may be reliably evaluated using the BIRD technique.
更多
查看译文
关键词
BIRD,FT-ICR,RRKM modeling,BDE,Ion-molecule reactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要