谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Fitting unbranching skeletal structures to objects.

Medical image analysis(2021)

引用 8|浏览23
暂无评分
摘要
Representing an object by a skeletal structure can be powerful for statistical shape analysis if there is good correspondence of the representations within a population. Many anatomic objects have a genus-zero boundary and can be represented by a smooth unbranching skeletal structure that can be discretely approximated. We describe how to compute such a discrete skeletal structure ("d-s-rep") for an individual 3D shape with the desired correspondence across cases. The method involves fitting a d-s-rep to an input representation of an object's boundary. A good fit is taken to be one whose skeletally implied boundary well approximates the target surface in terms of low order geometric boundary properties: (1) positions, (2) tangent fields, (3) various curvatures. Our method involves a two-stage framework that first, roughly yet consistently fits a skeletal structure to each object and second, refines the skeletal structure such that the shape of the implied boundary well approximates that of the object. The first stage uses a stratified diffeomorphism to produce topologically non-self-overlapping, smooth and unbranching skeletal structures for each object of a population. The second stage uses loss terms that measure geometric disagreement between the skeletally implied boundary and the target boundary and avoid self-overlaps in the boundary. By minimizing the total loss, we end up with a good d-s-rep for each individual shape. We demonstrate such d-s-reps for various human brain structures. The framework is accessible and extensible by clinical users, researchers and developers as an extension of SlicerSALT, which is based on 3D Slicer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要