Chrome Extension
WeChat Mini Program
Use on ChatGLM

Structure-inducing pre-training

Nature Machine Intelligence(2023)

Cited 4|Views29
No score
Abstract
Language model pre-training and the derived general-purpose methods have reshaped machine learning research. However, there remains considerable uncertainty regarding why pre-training improves the performance of downstream tasks. This challenge is pronounced when using language model pre-training in domains outside of natural language. Here we investigate this problem by analysing how pre-training methods impose relational structure in induced per-sample latent spaces—that is, what constraints do pre-training methods impose on the distance or geometry between the pre-trained embeddings of samples. A comprehensive review of pre-training methods reveals that this question remains open, despite theoretical analyses showing the importance of understanding this form of induced structure. Based on this review, we introduce a pre-training framework that enables a granular and comprehensive understanding of how relational structure can be induced. We present a theoretical analysis of the framework from the first principles and establish a connection between the relational inductive bias of pre-training and fine-tuning performance. Empirical studies spanning three data modalities and ten fine-tuning tasks confirm theoretical analyses, inform the design of novel pre-training methods and establish consistent improvements over a compelling suite of methods.
More
Translated text
Key words
structure-inducing,pre-training
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined