Chrome Extension
WeChat Mini Program
Use on ChatGLM

Removal of tetracycline-resistant Escherichia coli and its genes through ultrasound treatment combined with ultraviolet light emitting diodes.

Environmental research(2021)

Cited 3|Views6
No score
Abstract
Antibiotic resistance has gained increasing attention worldwide, and wastewater treatment plants have been regarded as hotspots for antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs). In this study, we evaluated the removal of tetracycline-resistant Escherichia coli and its related genes through ultrasound (US) treatment with different input levels of US-specific energy combined with ultraviolet light emitting diodes (UV-LEDs). Simultaneous US with UV-LEDs effectively eliminated tetracycline-resistant E. coli with the normal suggested UV-LEDs dosage (below 30 mJ/cm2). The removal efficiency increased with the addition of US (specific input energy of 8-16 kJ/L), and simultaneous US treatment with UV-LEDs was relatively more effective than US pretreatment. Analyses of cell damage by K+ leakage and flow cytometry showed that the cell wall kept its integrity during the applied treatment conditions. Consequently, the removal efficiencies of 16 S rRNA, tet M, and tet Q were unsatisfactory because less than 1 log reduction was achieved. Increasing the US energy remarkably damaged the cell wall and potentially promoted the reaction. The removal of ARGs increased four times when using US-specific input energy at 330 kJ/L with 5 mJ/cm2 compared with UV-LEDs alone. The US treatment combined with UV-LEDs is a novel process that does not require chemicals. Results of this research can provide theoretical support for the removal of ARGs.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined