谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Overcoming the design, build, test bottleneck for synthesis of nonrepetitive protein-RNA cassettes

NATURE COMMUNICATIONS(2021)

引用 10|浏览1
暂无评分
摘要
We apply an oligo-library and machine learning-approach to characterize the sequence and structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2 (MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of candidate binding sites for each CP, and screen for binding using a high-throughput dose-response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of binding sites, which allowed us to identify the critical structural and sequence features for binding of each CP. To verify our model and experimental findings, we design several non-repetitive binding site cassettes and validate their functionality in mammalian cells. We find that the binding of each CP to RNA is characterized by a unique space of sequence and structural determinants, thus providing a more complete description of CP-RNA interaction as compared with previous low-throughput findings. Finally, based on the binding spaces we demonstrate a computational tool for the successful design and rapid synthesis of functional non-repetitive binding-site cassettes.
更多
查看译文
关键词
Machine learning,Single-cell imaging,Synthetic biology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要