Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach

SCIENTIFIC REPORTS(2021)

引用 30|浏览11
暂无评分
摘要
Titanium dioxide (TiO 2 ) has a strong photocatalytic activity in the ultra-violet part of the spectrum combined with excellent chemical stability and abundance. However, its photocatalytic efficiency is prohibited by limited absorption within the visible range derived from its wide band gap value and the presence of charge trapping states located at the band edges, which act as electron–hole recombination centers. Herein, we modify the band gap and improve the optical properties of TiO 2 via co-doping with hydrogen and halogen. The present density functional theory (DFT) calculations indicate that hydrogen is incorporated in interstitial sites while fluorine and chlorine can be inserted both as interstitial and oxygen substitutional defects. To investigate the synergy of dopants in TiO 2 experimental characterization techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray and ultra-violet photoelectron spectroscopy (XPS/UPS), UV–Vis absorption and scanning electron microscopy (SEM) measurements, have been conducted. The observations suggest that the oxide’s band gap is reduced upon halogen doping, particularly for chlorine, making this material promising for energy harvesting devices. The studies on hydrogen production ability of these materials support the enhanced hydrogen production rates for chlorine doped (Cl:TiO 2 ) and hydrogenated (H:TiO 2 ) oxides compared to the pristine TiO 2 reference.
更多
查看译文
关键词
Electronic properties and materials,Materials for energy and catalysis,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要