谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Influence Of The Reaction Pathway On The Defect Formation In A Cu2znsnse4 Thin Film

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 9|浏览3
暂无评分
摘要
Point defect engineering in Cu2ZnSnSe4 (CZTSe) thin films is the main issue to improve its device performance. This study reveals the correlation between the reaction pathway and the point defects in the CZTSe film. The reaction pathway from a metallic precursor (Mo/Zn/Sn/Cu) to a kesterite CZTSe film is varied by changing the annealing process. The synthesized CZTSe films under different reaction pathways induce different device performances with different defect energy levels, although all CZTSe films have similar structural and optical properties (E-g similar to 1.0 eV). The admittance spectroscopy demonstrates the correlations between point defect types (V-Zn, Zn-Sn, Zn-Cu, Cu-Zn, and V-Cu) and the reaction pathways for the formation of CZTSe films. The different growth rates of binary selenides, such as ZnSe and/or Sn-Se phases, during the annealing process are especially strongly related to the formation of point defects, leading to the different open-circuit voltages (396-451 mV) and fill factors (51-65%). The results of this study suggest that controlling the reaction pathway is an effective approach to adjust the formation of defects in the kesterite CZTSe film as well as to fabricate high-performance solar cell devices.
更多
查看译文
关键词
kesterite, CZTSe, solar cell, defect, defect formation, reaction pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要