Diurnal transcriptomics analysis reveals the regulatory role of the circadian rhythm in super-hybrid rice LY2186

Genomics(2021)

引用 3|浏览18
暂无评分
摘要
Heterosis, an important biological phenomenon wherein F1 hybrids exhibit better performance than any of their parents, has been widely applied; however, its underlying mechanism remains largely unknown. Here, we studied and compared the dynamic transcriptional profiles of super-hybrid rice LY2186 and its parents at 17 time points during 2 day/night cycles and identified 1552 rhythmic differentially expressed genes (RDGs). Cluster and functional enrichment analyses revealed that the day- and night-phased RDGs were mainly enriched in the photosynthesis and stress response categories, respectively. Regulatory network analysis indicated that circadian-related RDGs are core components in both the day and night phases and extensively regulate downstream genes involved in photosynthesis, starch synthesis, plant hormone signal transduction, and other pathways. Furthermore, among the 282 RDGs mapped onto the quantitative tract loci of small intervals (≤100 genes), 72.3% were significantly enriched in the yield, vigor, and anatomy categories. These findings provide valuable information for exploring heterosis mechanisms further and guiding breeding practices.
更多
查看译文
关键词
Heterosis,Hybrid rice,Circadian rhythm,Transcriptome,Photosynthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要