Exploring the Flexibility of the Glycopeptide Antibiotic Crosslinking Cascade for Extended Peptide Backbones.

Chembiochem : a European journal of chemical biology(2023)

Cited 2|Views19
No score
Abstract
The glycopeptide antibiotics (GPAs) are a clinically approved class of antimicrobial agents that classically function through the inhibition of bacterial cell-wall biosynthesis by sequestration of the precursor lipid II. The oxidative crosslinking of the core peptide by cytochrome P450 (Oxy) enzymes during GPA biosynthesis is both essential to their function and the source of their synthetic challenge. Thus, understanding the activity and selectivity of these Oxy enzymes is of key importance for the future engineering of this important compound class. Recent reports of GPAs that display an alternative mode of action and a wider range of core peptide structures compared to classic lipid II-binding GPAs raises the question of the tolerance of Oxy enzymes for larger changes in their peptide substrates. In this work, we explore the ability of Oxy enzymes from the biosynthesis pathways of lipid II-binding GPAs to accept altered peptide substrates based on a vancomycin template. Our results show that Oxy enzymes are more tolerant of changes at the N terminus of their substrates, whilst C-terminal extension of the peptide substrates is deleterious to the activity of all Oxy enzymes. Thus, future studies should prioritise the study of Oxy enzymes from atypical GPA biosynthesis pathways bearing C-terminal peptide extension to increase the substrate scope of these important cyclisation enzymes.
More
Translated text
Key words
biocatalysis,biosynthesis,cytochromes,glycopeptide antibiotics,nonribosomal peptide synthesis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined