Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios.

Hearing Research(2017)

Cited 4|Views21
No score
Abstract
Long-term experience enhances neural representation of temporal attributes of pitch in the brainstem and auditory cortex in favorable listening conditions. Herein we examine whether cortical pitch mechanisms shaped by language experience are more resilient to degradation in background noise, and exhibit greater binaural release from masking (BRM). Cortical pitch responses (CPR) were recorded from Mandarin- and English-speaking natives using a Mandarin word exhibiting a high rising pitch (/yi2/). Stimuli were presented diotically in Quiet, and in noise at +5, and 0 dB SNR. CPRs were also recorded in binaural conditions, SONO (where signal and noise were in phase at both ears); or S0Nπ (where signal was in phase and noise 180° out of phase at each ear), using 0 dB SNR. At Fz, both groups showed increase in CPR peak latency and decrease in amplitude with increasing noise level. A language-dependent enhancement of Na–Pb amplitude (Chinese > English) was restricted to Quiet and +5 dB SNR conditions. At T7/T8 electrode sites, Chinese natives exhibited a rightward asymmetry for both CPR components. A language-dependent effect (Chinese > English) was restricted to T8. Regarding BRM, both CPR components showed greater response amplitude for the S0Nπ condition compared to S0N0 across groups. Rightward asymmetry for BRM in the Chinese group indicates experience-dependent recruitment of right auditory cortex. Restriction of the advantage in pitch representation to the quiet and +5 SNR conditions, and the absence of group differences in the binaural release from masking, suggest that language experience affords limited advantage in the neural representation of pitch-relevant information in the auditory cortex under adverse listening conditions.
More
Translated text
Key words
Pitch,Auditory cortex,Background noise,Binaural release from masking,Experience-dependent plasticity,Signal-to-noise ratio
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined