Core-Shell-Type All-Inorganic Heterometallic Nanoclusters: Record High-Nuclearity Cobalt Polyoxoniobates for Visible-Light-Driven Photocatalytic CO2 Reduction.

Angewandte Chemie (International ed. in English)(2023)

引用 2|浏览12
暂无评分
摘要
Only rarely have polyoxometalates been found to form core-shell nanoclusters. Here, we succeeded in isolating a series of rare giant and all-inorganic core-shell cobalt polyoxoniobates (Co-PONbs) with diverse shapes, nuclearities and original topologies, including 50-nuclearity {Co12Nb38O132}, 54-nuclearity {Co20Nb34O128}, 62-nuclearity {Co26Nb36O140} and 87-nuclearity {Co33Nb54O128}. They are the largest Co-PONbs and also the polyoxometalates containing the greatest number of Co ions and the largest cobalt clusters known thus far. These molecular Co-PONbs have intriguing and atomically precise core-shell architectures comprising unique cobalt oxide cores and niobate oxide shells. In particular, the encapsulated cobalt oxide cores with different nuclearities have identical compositions, structures and mixed-valence Co3+/Co2+ states as the different sized Co-O moieties of the bulk cubic-spinel Co3O4, suggesting that they can serve as various molecular models of the cubic-spinel Co3O4. The successful construction of the series of the Co-PONbs reveals a feasible and versatile synthetic method for making rare core-shell heterometallic PONbs. Further, these new-type core-shell bimetal species are promising cluster molecular catalysts for visible-light-driven CO2 reduction.
更多
查看译文
关键词
cobalt
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要