Fabrication and spectroscopic investigations on Er3+, Ho3+: SrF2 transparent ceramics for 2.7 μm emission

Journal of the European Ceramic Society(2022)

引用 7|浏览10
暂无评分
摘要
3 at.% Er3+, x at.% Ho3+: SrF2 (x = 0, 0.05, 0.1, 0.5, 1, 2) transparent ceramics, as the potential material for the 2.7 μm solid-state laser, were fabricated by hot-pressed sintering. XRD, TEM, SEM, and EDS measurements were used to investigate the phase composition, morphology, microstructure, and distribution of the elements of the nanoparticles and transparent ceramics. Results showed that the Er3+ ions and Ho3+ ions do not alter the SrF2 crystal structure, and they are distributed uniformly in the sample. With the increase of the Ho3+ doping concentration, the lattice parameter decreased from 5.799 Å to 5.784 Å, and the average grain size decreased gradually. The maximum transmittance of as-obtained ceramics is approximately 93 % which is close to the theoretical transmittance of SrF2. Moreover, the absorption spectra, emission spectra, and the lifetime of Er3+ and Ho3+ were investigated. The energy transfer processes between Er3+ and Ho3+ were discussed. After co-doping Ho3+, the lifetime difference between Er3+:4I11/2 and Er3+:4I13/2 levels was shortened from 8.50 ms to 1.12 ms. All the results show that the incorporation of Ho3+ with proper doping concentration is beneficial for achieving 2.7 μm laser output in Er3+: SrF2 transparent ceramics.
更多
查看译文
关键词
2.7 μm emission,Self-termination effect,Transparent ceramic,Energy transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要