System-on-chip approach microwave imaging reflectometer on DIII-D tokamak

REVIEW OF SCIENTIFIC INSTRUMENTS(2022)

引用 2|浏览28
暂无评分
摘要
System-on-chip millimeter wave integrated circuit technology is used on the two-dimensional millimeter-wave imaging reflectometer (MIR) upgrade for density fluctuation imaging on the DIII-D tokamak fusion plasma. Customized CMOS chips have been successfully developed for the transmitter module and receiver module array, covering the 55-75 GHz working band. The transmitter module has the capability of simultaneously launching eight tunable probe frequencies (> 0 dBm output power each). The receiver enclosure contains 12 receiver modules in two vertical lines. The quasi-optical local oscillator coupling of previous MIR systems has been replaced with an internal active frequency multiplier chain for improved local oscillator power delivery and flexible installation in a narrow space together with improved shielding against electromagnetic interference. The 55-75 GHz low noise amplifier, used between the receiver antenna and the first-stage mixer, significantly improves module sensitivity and suppresses electronics noise. The receiver module has a 20 dB gain improvement compared with the mini-lens approach and better than -75 dBm sensitivity, and its electronics noise temperature has been reduced from 55 000 K down to 11 200 K. The V-band MIR system is developed for co-located multi-field investigation of MHD-scale fluctuations in the pedestal region with W-band electron cyclotron emission imaging on DIII-D tokamak. Published under an exclusive license by AIP Publishing.
更多
查看译文
关键词
microwave,system-on-chip
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要