谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Bacterial infection reinforces host metabolic flux from arginine to spermine for NLRP3 inflammasome evasion.

Cell reports(2021)

引用 11|浏览18
暂无评分
摘要
Hosts recognize cytosolic microbial infection via the nucleotide-binding domain-like receptor (NLR) protein family, triggering inflammasome complex assembly to provoke pyroptosis or cytokine-related caspase-1-dependent antimicrobial responses. Pathogens have evolved diverse strategies to antagonize inflammasome activation. Here, Edwardsiella piscicida gene-defined transposon library screening for lactate dehydrogenase (LDH) release in nlrc4-/- bone marrow-derived macrophages (BMDMs) demonstrates that genes clustered in the bacterial arginine metabolism pathway participate in NLRP3 inflammasome inhibition. Blocking arginine uptake or putrescine export significantly relieves NLRP3 inflammasome inhibition, indicating that this bacterium rewires its arginine metabolism network during infection. Moreover, intracellular E. piscicida recruits the host arginine importer (mCAT-1) and putrescine exporter (Oct-2) to bacterium-containing vacuoles, accompanied by reduced arginine and accumulated cytosolic spermine. Neutralizing E. piscicida-induced cytosolic spermine enhancement by spermine synthetase or extracellular spermine significantly alters NLRP3 inflammasome activation. Importantly, accumulated cytosolic spermine inhibits K+ efflux-dependent NLRP3 inflammasome activation. These data highlight the mechanism of bacterial gene-mediated arginine metabolism control for NLRP3 inflammasome evasion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要