A 3nm Gate-All-Around Sram Featuring An Adaptive Dual-Bl And An Adaptive Cell-Power Assist Circuit

2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC)(2021)

引用 16|浏览25
暂无评分
摘要
Advanced technologies help to improve SRAM performance via recent transistor breakthroughs [1], which allow SRAM designers to focus on handling metal resistance by alleviating device performance impediments. Since SRAM margins are more vulnerable to the increasing metal resistance, due to smaller critical dimensions, SRAM-assist circuits are proposed to overcome the impact of metal resistance in recent technologies [2 –5]. One of the challenges is the design limitation such as the quantized transistor, which requires SRAM-assist to optimize SRAM margins. In this paper, gate-all-around (GAA) SRAM design techniques are proposed, which improve SRAM margins more freely, in addition to power, performance, and area (PPA). Moreover, SRAM-assist schemes are proposed to overcome metal resistance, which maximizes the benefit of GAA devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要