Assessment of effective elastic constants of U-10Mo fuel: a multiscale modeling and homogenization study

Journal of Nuclear Materials(2024)

引用 0|浏览2
暂无评分
摘要
The significant microstructural changes that U-Mo fuel undergoes during operation degrades its mechanical properties and structural integrity. Microstructural evolution entails the formation, evolution, and redistribution of porosity in conjunction with grain refinement. In the present paper, we employ numerical approaches to assess the impact of the various microstructural features—grains, nanoscale intragranular fission gas bubbles, and mesoscale intergranular voids—on the degradation of elastic constants. Phase-field microstructure models are combined with the asymptotic expansion homogenization technique in order to derive the effective elastic constants as a function of porosity and fission density. The results are verified and compared against theoretical bounds. Using this approach, elastic degradation in operating nuclear fuels can be quantified when the distributions of microstructural features are known.
更多
查看译文
关键词
phase-field model,asymptotic expansion homogenization,monolithic U-10Mo,fission gas bubbles,Ronchi equation of state,intergranular porosity,effective elastic constants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要