Using Reinforcement Learning for Generating Polynomial Models to Explain Complex Data

SN Comput. Sci.(2021)

引用 1|浏览1
暂无评分
摘要
Basic oxygen steel making is a complex chemical and physical industrial process that reduces a mix of pig iron and recycled scrap into low-carbon steel. Good understanding of the process and the ability to predict how it will evolve requires long operator experience, but this can be augmented with process target prediction systems. Such systems may use machine learning to learn a model of the process based on a long process history, and have an advantage in that they can make use of vastly more process parameters than operators can comprehend. While it has become less of a challenge to build such prediction systems using machine learning algorithms, actual production implementations are rare. The hidden reasoning of complex prediction model and lack of transparency prevents operator trust, even for models that show high accuracy predictions. To express model behaviour and thereby increasing transparency we develop a reinforcement learning (RL) based agent approach, which task is to generate short polynomials that can explain the model of the process from what it has learnt from process data. The RL agent is rewarded on how well it generates polynomials that can predict the process from a smaller subset of the process parameters. Agent training is done with the REINFORCE algorithm, which enables the sampling of multiple concurrently plausible polynomials. Having multiple polynomials, process developers can evaluate several alternative and plausible explanations, as observed in the historic process data. The presented approach gives both a trained generative model and a set of polynomials that can explain the process. The performance of the polynomials is as good as or better than more complex and less interpretable models. Further, the relative simplicity of the resulting polynomials allows good generalisation to fit new instances of data. The best of the resulting polynomials in our evaluation achieves a better R^2 score on the test set in comparison to the other machine learning models evaluated.
更多
查看译文
关键词
Reinforcement learning,Polynomial generation,Generalisation in machine learning,Steel making
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要