Application Of Core-Satellite Polydopamine-Coated Fe3o4 Nanoparticles-Hollow Porous Molecularly Imprinted Polymer Combined With Hplc-Ms/Ms For The Quantification Of Macrolide Antibiotics

ANALYTICAL METHODS(2021)

引用 7|浏览7
暂无评分
摘要
Core-satellite-structured magnetic nanosorbents (MNs) used for the selective extraction of macrolide antibiotics (MACs) were prepared in this study. The MNs (core-satellite polydopamine-coated Fe3O4 nanoparticles-hollow porous molecularly imprinted polymer) consisted of polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA) "core" linked to numerous hollow porous molecularly imprinted polymer (HPMIP) "satellites" with bridging amine functional groups. It is worth mentioning that HPMIPs act as "anchors" for selectively capturing target molecules. Polymers were characterized using TEM, SEM, FT-IR, VSM, and TGA and applied as magnetic dispersive solid-phase extraction (MDSPE) sorbents for the enrichment of trace MACs from a complex food matrix prior to quantification by HPLC-MS/MS. Nanocomposites revealed outstanding magnetic properties (36.1 emu g(-1)), a high adsorption capacity (103.6 mu mol g(-1)), selectivity (IF = 3.2), and fast kinetic binding (20 min) for MACs. The multiple advantages of the novel core-satellite-structured magnetic molecularly imprinted nanosorbents were confirmed, which makes us believe that the preparation method of the core-satellite MNs can be applied to other fields involving molecular imprinting technology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要