Flexible Nanogenerator From Electrospun Pvdf-Polycarbazole Nanofiber Membranes For Human Motion Energy-Harvesting Device Applications

ACS BIOMATERIALS SCIENCE & ENGINEERING(2021)

引用 27|浏览5
暂无评分
摘要
Poly(vinylidene difluoride) (PVDF) has become the polymer matrix of choice for fabrication of wearable electronics and physiological monitoring devices. Despite possessing a high piezoelectric constant, additives are required to increase the charge transfer from PVDF matrix to connected signal readout units. Many of these additives also stabilize the beta-phase of PVDF, which is associated with highest piezoelectric coefficients. However, most of the additives used are often brittle ceramic-phase materials resulting in decreased flexibility of the devices and offsetting the gain in beta-phase content. Intrinsically conducting polymers (ICP), on the other hand, are ideal candidates to improve the device-related properties of PVDF, due to their higher flexibility than ceramic fillers as well as ability to form conducting network in PVDF membranes. This work reports the performance and device feasibility of PVDF-polycarbazole (PCZ) electrospun nanofiber membranes. A higher beta-phase was observed by FTIR spectroscopy in PVDF/PCZ compared to other PVDF phases. Moreover, a higher open-circuit potential was recorded over PVDF/polyaniline composites, which were studied for comparison. The addition of PCZ reduced the flexibility of pure PVDF nanofibers by 20% only. Besides, the work investigated the bacterial biofouling and cell compatibility of the matrix, as essential properties to examine any putative medical device application. PVDF/PCZ membranes were then used to develop a nanogenerator, which was capable of instantly lighting an entire LED array employing the rectified output power, and charged up a 2.2 mu F capacitors using a bridge rectifier through a vertical compressive force applied periodically. Finally, the nanogenerator demonstrated electrical energy harvesting from movements of various parts of the human body, such as toe and heel movement and wrist bending. In conclusion, PCZ can be considered as an attractive, biocompatible, and anti-biofouling conducting polymer for electrical actuation and flexible electronic device applications.
更多
查看译文
关键词
nanogenerator, PVDF, wearable device, biomaterials, conducting polymers, biocompatibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要