Ionic Liquid-Loaded Microcapsules Doped Into Dental Resin Infiltrants

BIOACTIVE MATERIALS(2021)

引用 15|浏览18
暂无评分
摘要
Resin infiltrants have been effectively applied in dentistry to manage non-cavitated carious lesions in proximal dental surfaces. However, the common formulations are composed of inert methacrylate monomers. In this study, we developed a novel resin infiltrant with microcapsules loaded with an ionic liquid (MC-IL), and analyzed the physical properties and cytotoxicity of the dental resin. First, the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) was synthesized. BMI.NTf2 has previously shown antibacterial activity in a dental resin. Then, MC-IL were synthesized by the deposition of a preformed polymer. The MC-IL were analyzed for particle size and de-agglomeration effect via laser diffraction analysis and shape via scanning electron microscopy (SEM). The infiltrants were formulated, and the MC-IL were incorporated at 2.5%, 5%, and 10 wt%. A group without MC-IL was used as a control. The infiltrants were evaluated for ultimate tensile strength (UTS), contact angle, surface free energy (SFE), and cytotoxicity. The MC-IL showed a mean particle size of 1.64 (+/- 0.08) mu m, shriveled aspect, and a de-agglomeration profile suggestive of nanoparticles' presence in the synthesized powder. There were no differences in UTS among groups (p > 0.05). The incorporation of 10 wt% of MC-IL increased the contact angle (p < 0.05), while the addition from 5 wt% reduced the SFE in comparison to the control group (p < 0.05). The human cell viability was above 90% for all groups (p > 0.05). The incorporation of microcapsules as a drug-delivery system for ionic liquids may be a promising strategy to improve dental restorative materials.
更多
查看译文
关键词
Surface properties, Dental caries, Stress, Mechanical, Drug delivery systems, Polymers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要