In Vitro Antifungal Activity Of Pelgipeptins Against Human Pathogenic Fungi And Candida Albicans Biofilms

AIMS MICROBIOLOGY(2021)

引用 4|浏览5
暂无评分
摘要
Systemic mycoses have become a major cause of morbidity and mortality, particularly among immunocompromised hosts and long-term hospitalized patients. Conventional antifungal agents are limited because of not only their costs and toxicity but also the rise of resistant strains. Lipopeptides from Paenibacillus species exhibit antimicrobial activity against a wide range of human and plant bacterial pathogens. However, the antifungal potential of these compounds against important human pathogens has not yet been fully evaluated, except for Candida albicans. Paenibacillus elgii produces a family of lipopeptides named pelgipeptins, which are synthesized by a non-ribosomal pathway, such as polymyxin. The present study aimed to evaluate the activity of pelgipeptins produced by P. elgii AC13 against Cryptococcus neoformans, Paracoccidioides brasiliensis, and Candida spp. Pelgipeptins were purified from P. elgii AC13 cultures and characterized by high-performance liquid chromatography (HPLC) and mass spectrometry (MALDI-TOF MS). The in vitro antifugal activity of pelgipeptins was evaluated against C. neoformans H99, P. brasiliensis PB18, C. albicans SC 5314, Candida glabrata ATCC 90030, and C. albicans biofilms. Furthermore, the minimal inhibitory concentration (MIC) was determined according to the CLSI microdilution method. Fluconazole and amphotericin B were also used as a positive control. Pelgipeptins A to D inhibited the formation and development of C. albicans biofilms and presented activity against all tested microorganisms. The minimum inhibitory concentration values ranged from 4 to 64 mu g/mL, which are in the same range as fluconazole MICs. These results highlight the potential of pelgipeptins not only as antimicrobials against pathogenic fungi that cause systemic mycoses but also as coating agents to prevent biofilm formation on medical devices.
更多
查看译文
关键词
lipopeptides, systemic mycosis, Candida spp, Cryptococcus neoformans, Paracoccidioides brasiliensis, Paenibacillus elgii
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要