Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin.

Carbohydrate research(2021)

引用 4|浏览2
暂无评分
摘要
Monosaccharides, e.g. fructose, glucose, and arabinose are present in most foods consumed daily, whether, in natural or industrialized forms, and their concentration in the human bloodstream can impact the formation of advanced glycation end-products (AGEs, prevalent in people with diabetes) impacting the profile of Human Serum Albumin (HSA) in biodistribution of endogenous and exogenous compounds. Multiple spectroscopic techniques (UV-vis, circular dichroism, steady-state, and time-resolved fluorescence) combined with molecular docking showed that carbohydrates interact weakly and spontaneously via a ground-state association with HSA. The binding is enthalpically and entropically driven in the subdomain IIA (site I) and perturb weakly the secondary structure of the albumin. Hydrogen bonding and van der Waals forces are the main intermolecular interactions involved in the ligand binding, as well as hydrophobic effects related to the release of hydration shell upon ligand binding. Overall, the results indicated that an increase in glucose, fructose or arabinose level in the human bloodstream may cause functional perturbation on the binding capacity of albumin. Therefore, there is the necessity of carbohydrate level control in the bloodstream to not compromise the interaction and distribution of exogenous and endogenous compounds by HSA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要