Gene therapy using Aβ variants for amyloid reduction.

Molecular therapy : the journal of the American Society of Gene Therapy(2021)

引用 6|浏览22
暂无评分
摘要
Numerous aggregation inhibitors have been developed with the goal of blocking or reversing toxic amyloid formation in vivo. Previous studies have used short peptide inhibitors targeting different amyloid β (Aβ) amyloidogenic regions to prevent aggregation. Despite the specificity that can be achieved by peptide inhibitors, translation of these strategies has been thwarted by two key obstacles: rapid proteolytic degradation in the bloodstream and poor transfer across the blood-brain barrier. To circumvent these problems, we have created a minigene to express full-length Aβ variants in the mouse brain. We identify two variants, F20P and F19D/L34P, that display four key properties required for therapeutic use: neither peptide aggregates on its own, both inhibit aggregation of wild-type Aβ in vitro, promote disassembly of pre-formed fibrils, and diminish toxicity of Aβ oligomers. We used intraventricular injection of adeno-associated virus (AAV) to express each variant in APP/PS1 transgenic mice. Lifelong expression of F20P, but not F19D/L34P, diminished Aβ levels, plaque burden, and plaque-associated neuroinflammation. Our findings suggest that AAV delivery of Aβ variants may offer a novel therapeutic strategy for Alzheimer's disease. More broadly our work offers a framework for identifying and delivering peptide inhibitors tailored to other protein-misfolding diseases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要