An Artificial Phase-Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance (vol 60, pg 12082, 2021)

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2022)

引用 42|浏览17
暂无评分
摘要
AbstractComplex coacervation enables important wet adhesion processes in natural and artificial systems. However, existed synthetic coacervate adhesives show limited wet adhesion properties, non‐thermoresponsiveness, and inferior biodegradability, greatly hampering their translations. Herein, by harnessing supramolecular assembly and rational protein design, we present a temperature‐sensitive wet bioadhesive fabricated through recombinant protein and surfactant. Mechanical performance of the bioglue system is actively tunable with thermal triggers. In cold condition, adhesion strength of the bioadhesive was only about 50 kPa. By increasing temperature, the strength presented up to 600 kPa, which is remarkably stronger than other biological counterparts. This is probably due to the thermally triggered phase transition of the engineered protein and the formation of coacervate, thus leading to the enhanced wet adhesion bonding.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要