Stellar Evolution In The Disks Of Active Galactic Nuclei Produces Rapidly Rotating Massive Stars

ASTROPHYSICAL JOURNAL(2021)

引用 28|浏览5
暂无评分
摘要
Stars can either be formed in or captured by the accretion disks in active galactic nuclei (AGNs). These AGN stars are irradiated and subject to extreme levels of accretion, which can turn even low-mass stars into very massive ones (M > 100M (circle dot)) whose evolution may result in the formation of massive compact objects (M > 10M (circle dot)). Here we explore the spins of these AGN stars and the remnants they leave behind. We find that AGN stars rapidly spin up via accretion, eventually reaching near-critical rotation rates. They further maintain near-critical rotation even as they shed their envelopes, become compact, and undergo late stages of burning. This makes them good candidates to produce high-spin massive black holes, such as the ones seen by LIGO-Virgo in GW 190521g, as well as long gamma-ray bursts and the associated chemical pollution of the AGN disk.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要