Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies

CELLULAR & MOLECULAR IMMUNOLOGY(2021)

引用 93|浏览12
暂无评分
摘要
SARS-CoV-2 Spike-specific antibodies contribute the majority of the neutralizing activity in most convalescent human sera. Two SARS-CoV-2 variants, N501Y.V1 (also known as B.1.1.7 lineage or VOC-202012/01) and N501Y.V2 (B.1.351 lineage), reported from the United Kingdom and South Africa, contain several mutations in the receptor binding domain of Spike and are of particular concern. To address the infectivity and neutralization escape phenotypes potentially caused by these mutations, we used SARS-CoV-2 pseudovirus system to compare the viral infectivity, as well as the neutralization activities of convalescent sera and monoclonal antibodies (mAbs) against SARS-CoV-2 variants. Our results showed that N501Y Variant 1 and Variant 2 increase viral infectivity compared to the reference strain (wild-type, WT) in vitro. At 8 months after symptom onset, 17 serum samples of 20 participants (85%) retaining titers of ID50 >40 against WT pseudovirus, whereas the NAb titers of 8 samples (40%) and 18 samples (90%) decreased below the threshold against N501Y.V1 and N501Y.V2, respectively. In addition, both N501Y Variant 1 and Variant 2 reduced neutralization sensitivity to most (6/8) mAbs tested, while N501Y.V2 even abrogated neutralizing activity of two mAbs. Taken together the results suggest that N501Y.V1 and N501Y.V2 reduce neutralization sensitivity to some convalescent sera and mAbs.
更多
查看译文
关键词
Neutralization,Infectivity,Monoclonal antibody,Antibody,Titer,Virology,In vitro,Phenotype,Biology,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要