The conditional deletion of steroidogenic factor 1 ( Nr5a1 ) in Sox9-Cre mice compromises testis differentiation

SCIENTIFIC REPORTS(2021)

引用 7|浏览1
暂无评分
摘要
Steroidogenic factor 1 (NR5A1) is essential for gonadal development. To study the importance of NR5A1 during early gonadal sex differentiation, we generated Sox9-Cre - Nr5a1 conditional knockout (cKO) mice: Sox9-Cre;Nr5a1 flox/flox and Sox9-Cre;Nr5a1 flox/− mice. Double-immunostaining for NR5A1 and AMH revealed silenced NR5A1 in Sertoli cells and reduced AMH + cells in the gonads of XY Sox9-Cre - Nr5a1 cKO mice between embryonic days 12.5 (E12.5) and E14.5. Double-immunostaining for SOX9 and FOXL2 further indicated an early block in Sertoli cells and ectopic granulosa cell differentiation. The number of cells expressing the Leydig cell marker 3βHSD obviously reduced in the gonads of XY Sox9-Cre;Nr5a1 flox/− but not Sox9-Cre;Nr5a1 flox/flox mice at E15.5. The presence of STRA8 + cells indicated that germ cells entered meiosis in the gonads of XY Sox9-Cre - Nr5a1 cKO mice. The results of qRT-PCR revealed remarkably reduced and elevated levels of testis and ovary markers, respectively, in the gonads of XY Sox9-Cre - Nr5a1 cKO mice at E12.5‒E13.5. These data suggested that the loss of Nr5a1 abrogates the testicular pathway and induces the ectopic ovarian pathway, resulting in postnatal partial/complete male-to-female gonadal sex reversal. Our findings provide evidence for the critical role of NR5A1 in murine gonadal sex determination in vivo.
更多
查看译文
关键词
Differentiation,Endocrinology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要