Cycling and retention of nitrogen in European beech (Fagussylvatica L.) ecosystems under elevated fructification frequency

Biogeosciences Discussions(2021)

Cited 9|Views8
No score
Abstract
Abstract. Atmospheric deposition of nitrogen (N) has exceeded its demand for plant increment in forest ecosystems in Germany. High N inputs increased plant growth, the internal N cycling within the ecosystem, the retention of N in soils and plant compartments, and the N output by seepage water. But the processes involved are not fully understood, especially the role of fructification which has increased in its frequency. A field experiment using 15N labelled leaf litter exchange was carried out over a 5.5 years\u0027 period at seven long-term monitoring sites with European beech (Fagus sylvatica L.) ecosystems to study the impact of current mast frequency on N cycling. Mean annual leaf litterfall contained 35 kg N ha−1, but about one half of that was recovered in the soil 5.5 years after the establishment of the leaf litter 15N exchange experiment. Retention of leaf litter N in the soil was more closely related to the production of total litterfall than to the leaf litterfall indicating the role of fructification of beech trees in the amount of leaf N retained in the soil. In these forests fructification occurred commonly in intervals of 5 to 10 years, which has now changed to every two to three years as observed during this study period. Seed cupules contributed 51 % to the additional litterfall in mast years which caused a high nutrient demand during their decomposition due to their very high carbon (C) to N and C to phosphorus (P) ratios. Higher mast frequency increased the mass of mean annual litterfall by about 0.5 Mg ha−1 and of litterfall N by 8.7 kg ha−1. Mean net primary production (NPP) increased by about 4 %. Mean total N retention in soils calculated by input and output fluxes was unrelated to total litterfall indicating that mast events were not the primary factor controlling total N retention in soils. Despite reduced N deposition since the 1990s about 5.7 kg N ha−1 out of 20.7 kg N ha−1 deposited annually between 1994 and 2008 were retained in soils notably at acid sites with high N / P and C / P ratios in the organic layers and mineral soils. Ongoing N retention increased the N / P ratios in acid soils with moder type humus forms and reduced the availability of P for plant growth and litter decomposition. Trees retained twice as much N compared to soils by biomass increment particularly in less acid stands where the mineral soils had low C / N ratios.
More
Translated text
Key words
european beech,nitrogen
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined