A Low Area FPGA Implementation of Reversible Gate Encryption with Heterogeneous Key Generation

CIRCUITS SYSTEMS AND SIGNAL PROCESSING(2021)

引用 4|浏览2
暂无评分
摘要
The reversible computation is the process of designing the architecture with reversible logic gates (RLG) and applicable for optical computing, digital signal processing, nanotechnologies and low-power circuits. In this study, integer wavelet transform (IWT) compression technique is applied to the input image to compress the pixel value. The utilization of the IWT is used to improve the quality of the image in terms of peak signal-to-noise ratio (PSNR) and structural similarity index matrix (SSIM). In addition, different types of RLGs are used to perform the encryption and decryption of the images. A random number is generated using the Lorenz chaotic system (LCS) that contains three different stages and each stage is developed using arithmetic blocks. Here, an effective key value is generated from the input image values by connecting the LCS’s output with the heterogeneous key generation (HKG) module. The inverse IWT (IIWT) technique is used to retrieve the original data during execution of decryption operation. Application specific integrated circuit and field-programmable gate array (FPGA) performances are calculated for reversible logic cryptographic design (RLCD) IWT-HKG architecture. The results showed that it has achieved better performance compared to conventional methods. Moreover, security analyses such as avalanche effect, side channel attack and session key agreement are performed for the RLCD-IWT-HKG method. The RLCD-IWT-HKG method has achieved 89 LUTs, 52 flip flops and 31 slices for the Virtex 6 FPGA device. After retrieving the decrypted images, values of PSNR and SSIM are evaluated as 39.90 dB and 0.6874, respectively.
更多
查看译文
关键词
Application specific integrated chip,Avalanche effect,Field programmable gate array,Integer wavelet transform,Side channel attack
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要