Rhamnolipids From Pseudomonas Aeruginosa Rn19a Modifies The Biofilm Formation Over A Borosilicate Surface By Clinical Isolates

COATINGS(2021)

引用 9|浏览4
暂无评分
摘要
Microbial cells are reversibly associated with surfaces in the form of biofilms. Adhesion is the mechanism used by the microorganisms to bind to a surface initially; no biofilm is formed without the initial adhesion. The aim of this work was to evaluate the efficacy of the rhamnolipids of Pseudomonas aeruginosa Rn19a in inhibiting the biofilms formed by the clinical isolates Escherichia coli I5, Pseudomonas aeruginosa E26, Enterococcus faecalis I27 on borosilicate coupons inside a Center for Disease Control and Prevention (CDC) reactor. The isolate E26 (P. aeruginosa) did not show an adverse effect on biofilm formation by the rhamnolipid presence and showed normal growth in all the conditions tested (dynamic and static growth). The Enterococcus faecalis I27 isolate decreased its biofilm formation ability in 2.2 log CFU/cm(2) in static conditions by the addition of rhamnolipids and 3.0 log units in dynamic conditions. Finally, the E. coli I5 isolate was more susceptible to the influence of the borosilicate coupon covered with rhamnolipids. E5 reduced its biofilm formation capacity by 3.0 log CFU/cm(2) units at static conditions by the rhamnolipid addition and 6.0 log units at dynamic conditions. Biofilm formation was also observed by Confocal Laser Scanning Microscopy. In summary, the application of rhamnolipids may be useful to prevent the initial adhesion of bacteria to borosilicate surfaces. At a minimum, rhamnolipids effectively inhibit or diminish adhesion to surfaces by biofilm-forming isolates that do not belong to the genus Pseudomonas.
更多
查看译文
关键词
Pseudomonas aeruginosa, rhamnolipids, biofilms, microbial adhesion, bioreactor, borosilicate surface
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要