Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic

POLAR BIOLOGY(2021)

引用 8|浏览10
暂无评分
摘要
Average annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers affecting invertebrate availability, we modeled the biomass of invertebrates captured in modified Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confirmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively affected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey availability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level effects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.
更多
查看译文
关键词
Arctic,Arctic Shorebird Demographics Network,Arthropod,Invertebrate biomass,Phenology,Shorebird,Timing of breeding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要