Imaging Evidence For Solar Wind Outflows Originating From A Coronal Mass Ejection Footpoint

ASTROPHYSICAL JOURNAL(2021)

Cited 11|Views10
No score
Abstract
We report on Atmospheric Imaging Assembly observations of plasma outflows originating in a coronal dimming during a 2015 April 28 filament eruption. After the filament started to erupt, two flare ribbons formed, one of which had a well-visible hook enclosing a core (twin) dimming region. Along multiple funnels located in this dimming, a motion of plasma directed outward started to be visible in the 171 and 193 A filter channels of the instrument. In time-distance diagrams, this motion generated a strip-like pattern, which lasted for more than 5 hr and whose characteristics did not change along the funnel. We therefore suggest the motion is a signature of outflows corresponding to velocities ranging between 70 and 140 km s(-1). Interestingly, the pattern of the outflows and their velocities were found to be similar to those we observed in a neighboring ordinary coronal hole. Therefore, the outflows were most likely a signature of a coronal mass ejection-induced solar wind flowing along the open-field structures rooted in the dimming region. Further, the evolution of the hook encircling the dimming region was examined in the context of the latest predictions imposed for 3D magnetic reconnection. The observations indicate that the filament's footpoints were, during their transformation to the dimming region, reconnecting with surrounding canopies. To our knowledge, our observations present the first imaging evidence for outflows of plasma from a dimming region.
More
Translated text
Key words
solar wind outflows,solar wind
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined