Comb-like structural modification stabilizes polyvinylidene fluoride membranes to realize thermal-regulated sustainable transportation efficiency

Journal of Colloid and Interface Science(2021)

引用 9|浏览10
暂无评分
摘要
Hydrophobic micro-porous membrane such as polyvinylidene fluoride (PVDF) with excellent thermal-/chemical-stability and low surface energy has received extensive attention in industrial water treatment and sustainable energy conversion. However, undesirable contaminants caused by inevitable proteins or microorganisms adhesion may lead to a rapid loss of separation efficiency, which significantly deteriorate their porous structures and eventually limit their practical performance. Herein, we present a scalable approach for fabricating comb-like copolymer modified PVDF membranes (PVDF-PN@AgNPs) that prevent bacteria from proliferating on the surface and temperature-controlled release of adhered contaminants. Comb-like structured copolymers were imparted to a polydopamine (PDA)-treated PVDF membrane by Michael addition reaction, which enabled a covalent binding of comb-like structured copolymers to the membrane. Such unique structural design of grafted copolymer, containing hydrophilic side chain and temperature-responsive chain backbone, stably prevents bacteria adhesion and provides reversible surface wettability. Therefore, the resultant membranes were evaluated to prevent bacterial adhesion, high touch-killing efficiency and temperature-controlled contaminants release (~99% of protein and ~75% of bacteria). Moreover, with the collapse and stretch of grafted copolymer chain backbone, the synthetic membrane further reversibly adjusted inner micro-porous structure and surface wettability, which eventually helped to achieve variable water fluid transport efficiency. This study not only provides a feasible structural design for stably coping with the challenging of antifouling and subsequent contamination adhesion of PVDF membrane, but also potentially answers the significant gap between lab research advances and practical application, particularly in the industrial membrane field.
更多
查看译文
关键词
Comb-like copolymer,Antifouling,Fluid transportation,Separation membrane,Antibacterial surface
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要