Transient deactivation of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques.

Current biology : CB(2021)

引用 38|浏览7
暂无评分
摘要
We can generate goal-directed motor corrections with surprising speed, but their neural basis is poorly understood. Here, we show that temporary cooling of dorsal premotor cortex (PMd) impaired both spatial accuracy and the speed of corrective responses, whereas cooling parietal area 5 (A5) impaired only spatial accuracy. Simulations based on optimal feedback control (OFC) models demonstrated that "deactivation" of the control policy (reduction in feedback gain) and state estimation (reduction in Kalman gain) caused impairments similar to that observed for PMd and A5 cooling, respectively. Furthermore, combined deactivation of both cortical regions led to additive impairments of individual deactivations, whereas reducing the amount of cooling to PMd led to impairments in response speed but not spatial accuracy, both also predicted by OFC models. These results provide causal support that frontoparietal circuits beyond primary somatosensory and motor cortices are involved in generating goal-directed motor corrections.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要