Novel additive manufacturing applications for communicable disease prevention and control: focus on recent COVID-19 pandemic

Emergent Materials(2021)

Cited 0|Views1
No score
Abstract
COVID-19 disease caused by the SARS-CoV-2 virus has had serious adverse effects globally in 2020 which are foreseen to extend in 2021, as well. The most important of these effects was exceeding the capacity of the healthcare infrastructures, and the related inability to meet the need for various medical equipment especially within the first months of the crisis following the emergence and rapid spreading of the virus. Urgent global demand for the previously unavailable personal protective equipment, sterile disposable medical supplies as well as the active molecules including vaccines and drugs fueled the need for the coordinated efforts of the scientific community. Amid all this confusion, the rapid prototyping technology, 3D printing, has demonstrated its competitive advantage by repositioning its capabilities to respond to the urgent need. Individual and corporate, amateur and professional all makers around the world with 3D printing capacity became united in effort to fill the gap in the supply chain until mass production is available especially for personal protective equipment and other medical supplies. Due to the unexpected, ever-changing nature of the COVID-19 pandemic—like all other potential communicable diseases—the need for rapid design and 3D production of parts and pieces as well as sterile disposable medical equipment and consumables is likely to continue to keep its importance in the upcoming years. This review article summarizes how additive manufacturing technology can contribute to such cases with special focus on the recent COVID-19 pandemic.
More
Translated text
Key words
COVID-19,3D printing,Additive manufacturing,Rapid prototyping,Protective equipment,Diagnosis,Therapeutic devices
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined