Serological Test To Determine Exposure To Sars-Cov-2: Elisa Based On The Receptor-Binding Domain Of The Spike Protein (S-Rbdn318-V510) Expressed In Escherichia Coli

DIAGNOSTICS(2021)

引用 18|浏览6
暂无评分
摘要
Massive worldwide serological testing for SARS-CoV-2 is needed to determine the extent of virus exposure in a particular region, the ratio of symptomatic to asymptomatic infected persons, and the duration and extent of immunity after infection. To achieve this, the development and production of reliable and cost-effective SARS-CoV-2 antigens is critical. We report the bacterial production of the peptide S-RBDN318-V510, which contains the receptor-binding domain of the SARS-CoV-2 spike protein (region of 193 amino acid residues from asparagine-318 to valine-510) of the SARS-CoV-2 spike protein. We purified this peptide using a straightforward approach involving bacterial lysis, his-tag-mediated affinity chromatography, and imidazole-assisted refolding. The antigen performances of S-RBDN318-V510 and a commercial full-length spike protein were compared in ELISAs. In direct ELISAs, where the antigen was directly bound to the ELISA surface, both antigens discriminated sera from non-exposed and exposed individuals. However, the discriminating resolution was better in ELISAs that used the full-spike antigen than the S-RBDN318-V510. Attachment of the antigens to the ELISA surface using a layer of anti-histidine antibodies gave equivalent resolution for both S-RBDN318-V510 and the full-length spike protein. Results demonstrate that ELISA-functional SARS-CoV-2 antigens can be produced in bacterial cultures, and that S-RBDN318-V510 may represent a cost-effective alternative to the use of structurally more complex antigens in serological COVID-19 testing.
更多
查看译文
关键词
SARS-CoV-2, COVID-19, ELISA, serological testing, spike, receptor binding domain, Escherichia coli, antigen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要