Interfacial Atomistic Mechanisms Of Lithium Metal Stripping And Plating In Solid-State Batteries

ADVANCED MATERIALS(2021)

引用 48|浏览8
暂无评分
摘要
All-solid-state batteries based on a Li metal anode represent a promising next-generation energy storage system, but are currently limited by low current density and short cycle life. Further research to improve the Li metal anode is impeded by the lack of understanding in its failure mechanisms at lithium-solid interfaces, in particular, the fundamental atomistic processes responsible for interface failure. Here, using large-scale molecular dynamics simulations, the first atomistic modeling study of lithium stripping and plating on a solid electrolyte is performed by explicitly considering key fundamental atomistic processes and interface atomistic structures. In the simulations, the interface failure initiated with the formation of nano-sized pores, and how interface structures, lithium diffusion, adhesion energy, and applied pressure affect interface failure during Li cycling are observed. By systematically varying the parameters of solid-state lithium cells in the simulations, the parameter space of applied pressures and interfacial adhesion energies that inhibit interface failure during cycling are mapped to guide selection of solid-state cells. This study establishes the atomistic modeling for Li stripping and plating, and predicts optimal solid interfaces and new strategies for the future research and development of solid-state Li-metal batteries.
更多
查看译文
关键词
interfaces, Li metal anode, MD simulations, metal stripping and plating, solid&#8208, state batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要