Stamping Flexible Li Alloy Anodes.

Advanced materials (Deerfield Beach, Fla.)(2021)

引用 49|浏览4
暂无评分
摘要
Li metal holds great promise to be the ultimate anode choice owing to its high specific capacity and low redox potential. However, processing Li metal into thin-film anode with high electrochemical performance and good safety to match commercial cathodes remains challenging. Herein, a new method is reported to prepare ultrathin, flexible, and high-performance Li-Sn alloy anodes with various shapes on a number of substrates by directly stamping a molten metal solution. The printed anode is as thin as 15 µm, corresponding to an areal capacity of ≈3 mAh cm that matches most commercial cathode materials. The incorporation of Sn provides the nucleation center for Li, thereby mitigating Li dendrites as well as decreasing the overpotential during Li stripping/plating (e.g., <10 mV at 0.25 mA cm ). As a proof-of-concept, a flexible Li-ion battery using the ultrathin Li-Sn alloy anode and a commercial NMC cathode demonstrates good electrochemical performance and reliable cell operation even after repetitive deformation. The approach can be extended to other metal/alloy anodes such as Na, K, and Mg. This study opens a new door toward the future development of high-performance ultrathin alloy-based anodes for next-generation batteries.
更多
查看译文
关键词
Li anodes,Li dendrites,Li-metal batteries,flexible batteries,stamping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要