Chrome Extension
WeChat Mini Program
Use on ChatGLM

Comprehensive Analysis And Expression Profiling Of Pin, Aux/Lax, And Abcb Auxin Transporter Gene Families In Solanum Tuberosum Under Phytohormone Stimuli And Abiotic Stresses

BIOLOGY-BASEL(2021)

Cited 12|Views5
No score
Abstract
Simple SummaryIn this study, we provide comprehensive information on auxin transporter gene families in potato, including basic parameters, chromosomal distribution, phylogeny, co-expression network analysis, gene structure, tissue-specific expression patterns, subcellular localization, transcription analysis under exogenous hormone stimuli and abiotic stresses, and cis-regulatory element prediction. The responsiveness of auxin transporter family genes to auxin and polar auxin transport inhibitors implied their possible roles in auxin homoeostasis and redistribution. Additionally, the differential expression levels of auxin transporter family genes in response to abscisic acid and abiotic stresses suggested their specific adaptive mechanisms on tolerance to various environmental stimuli. Promoter cis-regulatory element description analyses indicated that a number of cis-regulatory elements within the promoters of auxin transporter genes in potato were targeted by relevant transcription factors to respond to diverse stresses. We are confident that our results provide a foundation for a better understanding of auxin transporters in potato, as we have demonstrated the biological significance of this family of genes in hormone signaling and adaption to environmental stresses.Auxin is the only plant hormone that exhibits transport polarity mediated by three families: auxin resistant (AUX) 1/like AUX1 (LAX) influx carriers, pin-formed (PIN) efflux carriers, and ATP-binding cassette B (ABCB) influx/efflux carriers. Extensive studies about the biological functions of auxin transporter genes have been reported in model plants. Information regarding these genes in potato remains scarce. Here, we conducted a comprehensive analysis of auxin transporter gene families in potato to examine genomic distributions, phylogeny, co-expression analysis, gene structure and subcellular localization, and expression profiling using bioinformatics tools and qRT-PCR analysis. From these analyses, 5 StLAXs, 10 StPINs, and 22 StABCBs were identified in the potato genome and distributed in 10 of 18 gene modules correlating to the development of various tissues. Transient expression experiments indicated that three representative auxin transporters showed plasma membrane localizations. The responsiveness to auxin and auxin transport inhibitors implied their possible roles in mediating intercellular auxin homoeostasis and redistribution. The differential expression under abscisic acid and abiotic stresses indicated their specific adaptive mechanisms regulating tolerance to environmental stimuli. A large number of auxin-responsive and stress-related cis-elements within their promoters could account for their responsiveness to diverse stresses. Our study aimed to understand the biological significance of potato auxin transporters in hormone signaling and tolerance to environmental stresses.
More
Translated text
Key words
potato, auxin transporter, PIN, AUX, LAX, ABCB, abiotic stress
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined