Streamlined Target Deconvolution Approach Utilizing A Single Photoreactive Chloroalkane Capture Tag

ACS CHEMICAL BIOLOGY(2021)

引用 5|浏览4
暂无评分
摘要
Identification of physiologically relevant targets for lead compounds emerging from drug discovery screens is often the rate-limiting step toward understanding their mechanism of action and potential for undesired off-target effects. To this end, we developed a streamlined chemical proteomic approach utilizing a single, photoreactive cleavable chloroalkane capture tag, which upon attachment to bioactive compounds facilitates selective isolation of their respective cellular targets for subsequent identification by mass spectrometry. When properly positioned, the tag does not significantly affect compound potency and membrane permeability, allowing for binding interactions with the tethered compound (probe) to be established within intact cells under physiological conditions. Subsequent UV-induced covalent photo-cross-linking "freezes" the interactions between the probe and its cellular targets and prevents their dissociation upon cell lysis. Targets cross-linked to the capture tag are then efficiently enriched through covalent capture onto HaloTag coated beads and subsequent selective chemical release from the solid support. The tag's built-in capability for selective enrichment eliminates the need for ligation of a capture tag, thereby simplifying the workflow and reducing variability introduced through additional operational steps. At the same time, the capacity for adequate cross-linking without structural optimization permits modular assembly of photoreactive chloroalkane probes, which reduces the burden of customized chemistry. Using three model compounds, we demonstrate the capability of this approach to identify known and novel cellular targets, including those with low affinity and/or low abundance as well as membrane targets with several transmembrane domains.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要